Single integrodifferential wave equation for a Lévy walk.

نویسنده

  • Sergei Fedotov
چکیده

We derive the single integrodifferential wave equation for the probability density function of the position of a classical one-dimensional Lévy walk with continuous sample paths. This equation involves a classical wave operator together with memory integrals describing the spatiotemporal coupling of the Lévy walk. It is valid at all times, not only in the long time limit, and it does not involve any large-scale approximations. It generalizes the well-known telegraph or Cattaneo equation for the persistent random walk with the exponential switching time distribution. Several non-Markovian cases are considered when the particle's velocity alternates at the gamma and power-law distributed random times. In the strong anomalous case we obtain the asymptotic solution to the integrodifferential wave equation. We implement the nonlinear reaction term of Kolmogorov-Petrovsky-Piskounov type into our equation and develop the theory of wave propagation in reaction-transport systems involving Lévy diffusion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brunet-Derrida particle systems, free boundary problems and Wiener-Hopf equations

We consider a branching-selection system in R with N particles which give birth independently at rate 1 and where after each birth the leftmost particle is erased, keeping the number of particles constant. We show that, as N → ∞, the empirical measure process associated to the system converges in distribution to a deterministic measure-valued process whose densities solve a free boundary integr...

متن کامل

Front propagation in hyperbolic fractional reaction-diffusion equations.

From the continuous-time random walk scheme and assuming a Lévy waiting time distribution typical of subdiffusive transport processes, we study a hyperbolic reaction-diffusion equation involving time fractional derivatives. The linear speed selection of wave fronts in this equation is analyzed. When the reaction-diffusion dimensionless number and the fractional index satisfy a certain condition...

متن کامل

Approximation of the Lévy-Feller advection-dispersion process by random walk and finite difference method

In this paper we present a random walk model for approximating a Lévy-Feller advection-dispersion process, governed by the Lévy-Feller advection-dispersion differential equation (LFADE). We show that the random walk model converges to LFADE by use of a properly scaled transition to vanishing space and time steps. We propose an explicit finite difference approximation (EFDA) for LFADE, resulting...

متن کامل

Option pricing using multivariate Lévy processes

For d-dimensional Lévy models we provide a method for Finite Element-based asset pricing. We derive the partial integrodifferential pricing equation and prove that the corresponding variational problem is well-posed. Hereto, an explicit characterization of the domain of the bilinear form is given. For the numerical implementation the problem is discretized by sparse tensor product Finite Elemen...

متن کامل

Integrodifferential diffusion equation for continuous-time random walk.

In this paper, we present an integrodifferential diffusion equation for continuous-time random walk that is valid for a generic waiting time probability density function. Using this equation, we also study diffusion behaviors for a couple of specific waiting time probability density functions such as exponential and a combination of power law and generalized Mittag-Leffler function. We show tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E

دوره 93 2  شماره 

صفحات  -

تاریخ انتشار 2016